24/02/2025

O.P.Code: 23CI0601

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech.II Year I Semester Regular Examinations February-2025 DATA STRUCTURES & ALGORITHMS

DATA STRUCTURES & ALGORITHMS				
(Computer Science & Information Technology)				
Time	: 3 Hours	lax. Maı	ks:	70
PART-A				
	(Answer all the Questions $10 \times 2 = 20$ Marks)			
1	a What do you mean by algorithm? List some of the properties of it.	CO ₁	L2	2M
	b Define Balance Factor.	CO ₁	L1	2M
	c Define Heapify.	CO ₂	L2	2M
	d List out the applications of Heap tree.	CO2	L1	2M
	e Define greedy method.	CO3	1.2	2M
	f What is 0/1 knapsack problem.	CO3	Li	2M
	g Define Backtracking.	CO4	L2	2M
	h What is Graph coloring?	CO4	L1	2M
	i What are NP complete and NP Hard?	CO5	L2	2M
	j State deterministic algorithm?	CO5	L1	
	PART-B	COS		2M
77.	(Answer all Five Units 5 x $10 = 50$ Marks)			
	(Adiswel all Five Olliss 5 x 10 – 30 Ivialks) UNIT-I			
2	a Illustrate an algorithm for Finding sum of natural number.	CO ₁	L3	5M
	b Analyze space complexity and time complexity in detail with example.	CO ₁	L2	5M
	OR			
3	a What is Asymptotic Notation? Explain different types of notations with examples.	CO1	L2	5M
	b Discuss briefly with suitable example about Big 'O' notation and Theta	CO1	L4	5M
	notation '\text{\text{\text{o}}}'.	COI	L4	SIVI
4	Explain in detail about an autient of II.	000	T 4	98 Th. 97
4	a Explain in detail about operations of Heap Tree.	CO2	L2	5M
	b Compare between Min heap and Max heap.	CO2	L3	5M
=	OR	600		
5	a Explain Graph representations with suitable example.	CO2	L2	5M
	b Discuss Connected components and Bi-connected components along with	CO2	L4	5M
	Applications.			
	UNIT-III			
6	a Build any one application of dynamic programming with an example.	CO ₃	L2	5M
	b Explain 0/1 knapsack problem by using dynamic programming with an	CO3	L3	5M
	examples.			
	OR			
7	Construct optimal binary search tree for the given problem	a CO3	L2	10M
	n=4,(a1,a2,a3,a4)=(a,b,c,d),P(1,2,3,4,)=(3,3,1,1),Q(0,1,2,3,4)=(2,3,1,1,1).			
	UNIT-IV			
8	Consider a set $S = \{5,10,12,13,15,18\}$ and $d=30$. Solve it for obtaining	c CO4	L2	10M
	Sum of Subset using Backtracking method.	,		
	OR			
9	Describe how the backtracking method is applied to solve the 8-Queens	CO4	L2	10M
	problem.			_ 01.2
	UNIT-V			
10	Explain and shows the relationship between P,NP,NP Hard and NI	COS	1.2	10M
	Complete with neat diagram.	COS	ک سا	1 0 171
	OR			
11	Determine the classes NP-hard and NP-complete problem with example.	CO5	1.2	10M
	*** END ***			~ 0.17.
	~~			D 4 1